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We apply optimal control theory (OCT) to the design of refocusing pulses suitable for the CPMG sequence
that are robust over a wide range of B0 and B1 offsets. We also introduce a model, based on recent pro-
gress in the analysis of unitary dynamics in the field of quantum information processing (QIP), that
describes the multiple refocusing dynamics of the CPMG sequence as a dephasing Pauli channel. This
model provides a compact characterization of the consequences and severity of residual pulse errors.
We illustrate the methods by considering a specific example of designing and analyzing broadband
OCT refocusing pulses of length 10t180 that are constrained by the maximum instantaneous pulse power.
We show that with this refocusing pulse, the CPMG sequence can refocus over 98% of magnetization for
resonance offsets up to 3.2 times the maximum RF amplitude, even in the presence of ±10% RF
inhomogeneity.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

A common aspect of the continuing development of magnetic
resonance and quantum information processing (QIP) is the study
of the efficiency, capabilities, and limits of control over complex
quantum dynamics. To this end, optimal control theory (OCT) [1]
is an important tool in both fields for the design of precise control
sequences. From the standpoint of QIP, OCT has emerged as the best
method of optimizing arbitrary unitary dynamics, allowing mag-
netic resonance to continue serving as the most successful testbed
for the development and evaluation of techniques to accurately
control quantum information [2–5]. The relevance of OCT to mag-
netic resonance has also been well-established [6–10]. Here we fo-
cus on a specific instance of that relevance by considering how QIP
and OCT may be applied to the Carr–Purcell–Meiboom–Gill (CPMG)
[11,12] sequence. The CPMG sequence is an ideal candidate to
investigate the capabilities of OCT in both the QIP and magnetic
resonance settings due to its importance to both fields and its
well-known design and performance criteria.

The CPMG sequence is primarily used in magnetic resonance
and QIP for situations where significant field inhomogeneities –
which may or may not depend on time – are present. The versatil-
ity of the sequence lies in its inherent robustness to pulse nutation
angle errors and insensitivity to variations in the static, B0, and the
ll rights reserved.
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applied radio-frequency (RF), B1, fields. In the context of magnetic
resonance, the CPMG sequence is most useful to monitor dynamic
processes, such as relaxation and diffusion. For complex systems
with multi-exponential decays, it is necessary to acquire large
numbers of echoes with short echo spacings to cover the entire
range of relaxation times. Averaging over the multiple echoes gen-
erated by the sequence further enhances the signal-to-noise ratio
(SNR) of these measurements. In one-sided and stray field mag-
netic resonance applications, where the inhomogeneity in B0 is
typically much larger than the available RF amplitude, the CPMG
sequence is particularly important. These applications include
well-logging [13,14], the NMR-MOUSE [15], and ex situ and sin-
gle-sided NMR [16,17]. The CPMG sequence has also proven to
be the best means of suppressing general environmental decoher-
ence in quantum computations, towards the goal of fault-tolerance
[18–21]. Although the CPMG sequence is inherently tolerant of
field inhomogeneities and pulse nutation angle errors, the robust-
ness of the sequence is ultimately limited by the quality of the
refocusing pulses. Square hard pulses, for example, only effectively
refocus spins at static B0 fields that deviate from the Larmor condi-
tion by much less than the RF amplitude of the pulse. When RF
field inhomogeneity is taken into account, the refocusing proper-
ties of the sequence are further degraded [14].

In almost all circumstances, it is important to develop refocus-
ing pulses for the CPMG sequence that simultaneously have a large
bandwidth with respect to static field inhomogeneity, account for
RF inhomogeneity, and act as a universal rotation – as opposed
to the state to state transfer performed by inversion pulses. The
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specific demands of each application, however, may vary. For
example, in magnetic resonance measurements, maximixing SNR
is often the most important criteria for designing CPMG sequences.
This entails – assuming a limit on instantaneous or overall power
consumption – finding the trade-off between maximixing the
bandwidth of the sequence with respect to inhomogeneity while
minimizing the pulse length to allow the acquisition of more ech-
oes in a given time period. On the other hand, for QIP applications,
the pulse length is less important than maximizing the bandwidth
of the sequence in order to suppress as much decoherence as pos-
sible. In order to address SNR concerns, we must first be able to
systematically maximize bandwidth for a given pulse time. It is
this problem that we consider in detail in this work. It directly ad-
dresses the concerns of QIP, demonstrates and evaluates our tech-
niques, and lays the groundwork for future studies.

Finding a global solution to maximizing bandwidth for a given
pulse time and subject to constraints of pulse power has proven
to be difficult [22], and perhaps impossible due to the complexity
and size of the problem. However, by taking advantage of extensive
theoretical and numerical results in quantum control, we may gain
insight into the problem. In this work we describe how OCT pro-
vides a systematic means of finding consistent, effective solutions
to the problem of designing broadband refocusing pulses suitable
for use in the CPMG sequence. We focus, in particular, on finding
refocusing pulses that perform an identical unitary operation over
as large a range of resonance offsets and RF amplitudes as possible,
while adhering to constraints of pulse length and maximum
instantaneous RF power. We also describe some future applica-
tions for which the techniques outlined in this work may be used
to find novel pulses, and introduce a new method, based on the
study of quantum channels from quantum information theory, to
compactly analyze the dynamics and accumulation of pulse errors
in the CPMG sequence.
2. CPMG criteria

The CPMG sequence consists of periodic applications of a cycle,
[s � p)y � 2s � p)y � s], which repeatedly refocuses transverse
spin magnetization, leading to a train of echoes. The accumulation
of pulse errors during the sequence causes only a single orthogonal
component of the input state to be preserved – the component
along the axis of the refocusing pulses. Meiboom and Gill’s modifi-
cation to the original Carr–Purcell sequence was to recognize this
symmetry of the pulse errors, and shift the phase of the excitation
pulse applied before the sequence such that the initial spin magne-
tization aligns with the axis of refocusing. There are, then, two
common measures for the success of a CPMG sequence: (1) a single
orthogonal component of the input state does not decay in the ab-
sence of relaxation, regardless of the time between refocusing
pulses (echo spacing) and (2) that the echo visibility be maximal.
These measures dictate the design requirements for the refocusing
pulses: (i) the direction of the effective rotation axis must be ori-
ented exactly in the xy-plane, (ii) the effective rotation axis and
the initial spin magnetization must be aligned, and (iii) the effec-
tive nutation angle must be p radians.

The influence of not keeping the effective field direction in the
transverse plane is seen by considering the efficiency of averaging
static field inhomogeneities by a single hard p-pulse that is tilted
an angle f from the xy-plane. The zeroth order contribution to
the average Hamiltonian of a magnetic field inhomogeneity,
Hint = Dxrz, for the sequence s � p)y � s is

HCP
eff ¼ Dxrzð1� cos 2fÞ þ Dxry sin 2f: ð1Þ

Ideally, f = 0 and the Hamiltonian vanishes. Notice that when the RF
field is tilted from the transverse plane the refocusing under this
sequence is incomplete and similar to that engineered in to the
Chemical Shift Concertina sequence [23], which was designed to
scale chemical shifts. In calculating (1) we have kept the nutation
angle fixed to p as we wish to explicitly illustrate the decrease in
averaging as the effective field is rotated out of the xy-plane. The
residual contribution to HCP

eff arises from incomplete modulation of
the spin dynamics. This reduction in the modulation depth of the
averaging is also detrimental to effective decoupling as described
by Waugh [24].

Next, consider the sensitivity of the CP cycle to a mis-setting of
the pulse nutation angle. We can observe this dependence by cal-
culating the propagator corresponding to one cycle of the CP(MG)
sequence, with pulse nutation error �, applied to a spin whose Lar-
mor precession is off-resonance by an amount Dx:

Uð�;DxÞ ¼ e�i12Dxrzse�i12ðp��Þry e�iDxrzse�i12ðp��Þry e�i12Dxrzs: ð2Þ

For the sake of simplicity, the pulses are assumed to be on-reso-
nance. The improvement that Meiboom and Gill brought to the
Carr–Purcell cycle was to recognize that the refocusing is more ro-
bust when the pulse rotation axis and the initial magnetization are
aligned. The benefit of the CPMG sequence is seen by examining the
retained magnetization under conditions of maximal alignment and
minimal alignment – qin = ry, rx respectively. The overlap of initial
and final magnetization under the action of the cycle is

Ox;y ¼
1
2

Trfrx;yUð�;DxÞrx;yUyð�;DxÞg; ð3Þ

Ox ¼ 1� 2 cos2ðDxsÞ�2 þ Oð�4Þ; ð4Þ

Oy ¼ 1� 1
8

sin2ð2DxsÞ�4 þ Oð�5Þ: ð5Þ

Notice that if the rotation axis and the initial magnetization are
aligned then the pulse error appears only in the fourth order of �,
while for the original CP sequence the pulse error appears already
in second order.

The value of the CPMG sequence is that it simplifies the spin
dynamics when applied over a distribution of Hamiltonians. For
most applications, the relevant distribution is a spatially depen-
dent spread in off-resonance frequencies, Dx, and scaled RF field
amplitudes, x1, relative to a nominal value (x1 = 1). The overall
dynamics then correspond to a convex operator sum over the clas-
sical probability distribution, P(Dx,x1):

qðnÞout ¼
Z

PðDx;x1Þ½UcycleðDx;x1Þ�nqin UycycleðDx;x1Þ
h in

dDxdx1;

ð6Þ

where qðnÞout is the density operator after the application of n cycles
(2n pulses). The averaging must be undertaken after the propagator
for each element of the distribution is raised to the nth power. An
important result in the design of CPMG sequences is that the projec-
tion of the rotation axis of not only the refocusing pulse but also the
cycle propagator, Ucycle, onto the initial magnetization must be as
large as possible [25]. If this is true for each element of the distribu-
tion, it will be true when the result is averaged over P(Dx,x1).
Additionally, it will be true for all n, as the rotation axis will remain
unchanged when the individual propagators are raised to the nth
power – corresponding to repeated applications of the cycle. This
requires the cycle propagator for each element of P(Dx,x1) to be
expressible as

UcycleðDx;x1Þ ¼ e�i
hðDx;x1 Þ

2 ry ; ð7Þ

such that all spins undergo a y-axis rotation of any angle over the
cycle. This requirement places demands on the effective rotation
axis and nutation angle of the refocusing pulses in the CPMG cycle.

The inherent robustness of the CPMG sequence to pulse nuta-
tion errors is reflected in the rotation axis of the cycle propagator.
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As stated previously, when the pulse rotation axis is taken to be
aligned with the initial magnetization, the cycle rotation axis error
appears to fourth order in small deviations from a p nutation angle.
However, when the nutation angle is taken to be exactly p radians,
the cycle rotation axis error appears as the cosine of small devia-
tions from a y-axis rotation, first appearing to second order. It is
apparent that a deviation of the refocusing pulse from a perfect
y-axis rotation is more detrimental to a successful CPMG sequence
than is an identical deviation from a perfect p nutation angle.

There is some flexibility in the precision of the rotation charac-
teristics of the pulse, if a certain amount of signal loss is tolerable.
The signal for a particular value of Dx and x1 after k echoes is gi-
ven by:

My ¼ ð�1Þk cosðkdÞ 1� r2
y

� �
þ r2

y ð8Þ

where d is the deviation of the half-cycle nutation angle from p
radians and ry is the y-component of the half-cycle rotation axis
for the isochromat being considered. In order to retain 99% of the
initial magnetization, for example, we require ry to be 0.995 for each
isochromat, implying the pulse rotation axis must be within
roughly 6� of the initial magnetization, while the pulse nutation an-
gle only need be within roughly 12� of 180�. However, since it is
desirable to maximize the retained signal, it is necessary to require
that the refocusing pulses be as close to a p rotation about the y-
axis as possible, leading to h(Dx,x1) � 2p and Ucycle(Dx,x1) � I
(identity) for all Dx and x1. For input states orthogonal to ry, the
deviation from identity is cumulative for repeated cycle applica-
tions and leads to pulse-error-induced dephasing of the input state.

3. Methods

3.1. Optimal control theory for unitary pulse design

It is well-known that better compensation for static and RF field
inhomogeneity may be achieved by using composite pulses [26],
adiabatic pulses [27–30], and shaped pulses [22]. These pulses
achieve superior performance by increasing the number of degrees
of freedom of the pulse shape. As noted previously [31], the most
general pulse possible is simply a list of amplitudes and phases
that do not necessarily adhere to a simple functional form. How-
ever, optimizing a general waveform can be challenging, especially
for long waveforms with a corresponding large parameter space. A
simulated annealing algorithm has been successfully applied to the
design of pulses containing many periods of amplitude and phase
variation [22,32]. Convergence was achieved by reducing the num-
ber of degrees of freedom of the pulse shape by representing the
waveform as a sum of Fourier components. OCT techniques based
on gradient search algorithms have proven exceptionally useful to
efficiently find solutions in a large parameter space [6–8,33]. OCT
is a well-established method to determine locally optimal solu-
tions in a multivariate space, subject to a cost-functional [1,34–
36]. Although these solutions correspond to local optima, these
pulses have been demonstrated to yield excellent results and have
found application in both NMR [37,38] and ESR [39].

A great deal of effort has been devoted in the past to using OCT
techniques to optimize excitation and inversion pulses which
achieve a single state-to-state transformation with a high degree
of accuracy [6,7,33,40]. The CPMG sequence, however, requires
pulses that perform a universal rotation, acting as a single unitary
operation on all input states. It has been shown previously that
state-to-state pulses can be made into universal rotation pulses,
yielding refocusing pulses of twice the duration [41]. For example,
given a 90� excitation pulse, a universal rotation pulse may be con-
structed by first applying a phase-reversed version of the excita-
tion pulse, followed immediately by a time reversed version of
the excitation pulse. While this symmetrization procedure leads
to good refocusing pulses suitable for application in the CPMG se-
quence, we focus here on searching for general, non-symmetrized
pulses. Expanding the set of potential solutions could possibly lead
to pulses with better performance.

A treatment of the problem for a single spin species in SU(2) –
neglecting relaxation and diffusion effects – involves numerically
inverting the Liouville-von Neumann equation, which describes
the evolution of a density operator, q, under the action of a gener-
ally time-dependent Hamiltonian:

dq
dt
¼ �i½q;HðtÞ�: ð9Þ

The general solution to this equation may be written in terms of
a unitary propagator, U(t):

qðtÞ ¼ UðtÞq0UyðtÞ ð10Þ

UðtÞ ¼ Te�i
R

HðtÞdt ; ð11Þ

where T is the Dyson time ordering operator. The challenges in
pulse design stem from the difficulty of finding a time-dependent
Hamiltonian which implements a useful approximation to a desired
unitary operation. The dominant Hamiltonian generating the
dynamics for an ensemble of isolated spin-1

2 nuclei consists of the
Zeeman interaction with the applied static, B0, field and the reso-
nant interaction with the applied RF, B1, field:

HðtÞ ¼ Dx
2

rz þ AðtÞx1

4
e�iðxt tþ/ðtÞÞrz=2rxeiðxt tþ/ðtÞÞrz=2: ð12Þ

Here the OCT pulse is a time-dependent modulation of the RF
amplitude, A(t), and phase, /(t), applied at a transmitter frequency
xt. In our notation, x1 is a dimensionless scaling factor of the RF
amplitude. Our goal is to find time sequences of the control param-
eters, {A(t), /(t)} which, taken over the set of Hamiltonians deter-
mined by P(Dx,x1), correspond to action which is sufficiently
‘close’ to a desired transformation, as measured by an appropriate
performance functional.

The choice of performance functional is critical in the design
process. As we are optimizing over a classical probability distribu-
tion, an appropriate performance functional is given by the convex
weighted sum of the unitary fidelities for each member of the
distribution:

eU ¼ X
Dx;x1

PðDx;x1ÞUDx;x1 ðUpulse;UtargÞ; ð13Þ

where

UDx;x1 ðUpulse;UtargÞ ¼
Tr UpulseðDx;x1ÞUytarg

n o��� ���2
4

: ð14Þ

The performance functional (14) is a standard metric for the dis-
tance between two unitary operators in SU(2) and is equivalent to
the average of the correlations of a complete set of input states
evolved under Upulse and Utarg, respectively [4].

The behavior of (14) with respect to Dx and x1 is sufficient to
ensure the satisfaction of the CPMG criteria. Consider a general
rotation in SU(2),

Uðh; r̂Þ ¼ e�ih2r̂�~r; ð15Þ

with nutation angle h about an axis given by the unit vector r̂. The
corresponding fidelity to a p rotation about the y-axis is

U U; e�ip2ry
� �

¼ sin2 h
2

r2
y ¼ sin2 h

2
cos2 /; ð16Þ

where h is, again, the nutation angle of the pulse and / is the angle
between r̂ and ŷ. Small deviations from a p rotation about the y-axis
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cause the fidelity to decrease quickly, ensuring that high fidelity
corresponds to the satisfaction of CPMG criteria (i) and (ii). Addi-
tionally, as noted in CPMG criteria (iii), the requirement that it is
more important to minimize / than it is to minimize h is reflected
in the behavior of the fidelity. It is useful to note that, in our ap-
proach, it is easy to substitute a particular functional for a different
one. While our chosen performance functional exhibits the general
behavior we desire, we cannot rule out the existence of another
functional which may be more sensitive to deviations in / while
allowing more flexibility in h. Such a functional could possibly
lead to more accurate solutions with an enhanced bandwidth. How-
ever, this aspect of OCT’s versatility has not been explored in this
work.
3.2. The GRAPE algorithm

In order to find locally optimal pulses which achieve high fidel-
ity over P(Dx,x1) we utilize the efficient optimal control GRadient
Ascent Pulse Engineering (GRAPE) algorithm developed by Khaneja
and coworkers. Here we provide only the details of the algorithm
relevant to this work. Complete details and background of the algo-
rithm may be found in the references [9,10].

We consider here OCT pulses that are defined to be piecewise
constant over a number of intervals, N, each of length Dt, which
yields an overall pulse length of T = NDt. During each interval,
the amplitude, A, and phase, /, of the RF modulation is set to con-
stant values, such that the pulse is described as a list {Aj, /j}, where
j runs from 1 to N. The GRAPE algorithm proceeds by choosing an
initial collection of RF amplitudes and phases, calculating the
Hamiltonian, propagator, and fidelity (Eqs. (12), (11), and (14))
for each element of P(Dx,x1), then updating the controls based
on the respective gradients of the fidelity. This process repeats un-
til either a desired value of eU is reached or the improvement in
fidelity from one iteration to the next is less than a preset thresh-
old value, indicating a local optimum has been reached. As we are
optimizing over a classical distribution, the fidelities and gradients
were calculated for each isochromat, then averaged based on the
weightings defined by the distribution. In the notation of [10]
the fidelity and corresponding gradients to first order in Dt for each
isochromat are

U ¼ jhUtargjUðTÞij2 ¼ hPjjXjihXjjPji ð17Þ
dU

dukðjÞ
¼ �RefhPjjiDsHkXjihXjPjig ð18Þ

where Pj ¼ Uyjþ1 . . . UyNUtarg and Xj = Uj. . .U1 are the backward and for-
ward representations of the total pulse propagator at the jth time
step, and u1(j) = Ajcos(/j), u2(j) = Ajsin(/j), H1 = rx, and H2 = ry are
the values and representation of the RF control parameters in Carte-
sian coordinates. The timestep, Dt must be chosen much smaller
than the inverse magnitude of the Hamiltonians in order for the
truncation of the expansion of the gradients (Eq. (18)) to be valid.

The updating step for RF amplitudes may be written as

unþ1
k ðjÞ ¼ un

kðjÞ þ �
deU

dun
kðjÞ

ð19Þ

where � is an adjustable step-size and n refers to the iteration num-
ber of the algorithm. The step-size is adjusted using a line-search at
the end of each iteration in order to maximize the increase in eU
without making large deviations in the control parameters between
iterations, hindering convergence. Also, in order to prevent the RF
amplitude from exceeding a predefined value, any pulsing periods
which exceed the maximum are simply reset to the maximum at
the end of each iteration.
3.3. Iterative optimization strategy

In the absence of constraints, the GRAPE algorithm guarantees
that our optimized pulse parameters will deterministically con-
verge to the nearest local maximum of average fidelity. The value
of the average fidelity at this local maximum depends on the struc-
ture of the control landscape – a geometric representation of the
value of the performance functional as a function of the control
parameters. By definition, the control landscape for our chosen
performance functional is given by the weighted convex sum of
the control landscapes for each member of the distribution,
P(Dx,x1). The stucture and dimensionality of the control land-
scape is determined by our choice of T, Dt, and P(Dx,x1). Limiting
the maximum instantaneous RF power constrains the ability of the
algorithm to reach a local optimum from a given random initial
guess of the pulse parameters, {Aj, /j}init.

In idealized situations, two key results of quantum control the-
ory provide some insight into the structure of the control land-
scape, and thus, the level of control we can expect to achieve. In
general, though, very little may be concretely said about the struc-
ture of the control landscape in quantum optimizations, which
makes it extremely difficult to find the best possible (global) solu-
tion. It has been shown that in the absence of decoherence every
local optima is exact [42,43], and even in the presence of a static,
classical distribution of Hamiltonians there exist solutions which
provide exact implementations of the desired unitary operation
for every member of the ensemble (see online material for [42]).
However, these results only apply to situations where there are
no constraints on pulse length and amplitude and the pulse shape
is taken to be changing continuously as a function of time. Impos-
ing these constraints, as we do in this work, implies that our solu-
tions will not reach the desired optimum over the distribution, and
that no optimum will correspond to an exact implementation of
the desired unitary operator. When optimizing a particular initial
guess to the nearest optimum point, then, we are sampling from
the set of non-degenerate local optima without any guarantee of
the performance being close to the global maximum.

We tried two systematic methods to investigate the maximum
achievable pulse performance for our techniques and constraints,
each of which produced similar results but differed in efficiency
and information gained about the structure of the control land-
scape. The first method involved choosing a particular width of
the distribution and optimizing hundreds of random initial guesses
to obtain a histogram of achievable fidelities. The best of these was
then taken as the maximum performance we could achieve for the
distribution in question. The width of the distribution was then in-
creased, and the process repeated, until the highest achievable
fidelity was no longer satisfactory. Our results for a single width
of the distribution confirmed the behavior seen in [40]. A wide
range of optimized fidelities were obtained, with the majority clus-
tered around higher values. The results of these optimizations tell
us that the static collective landscape for our problem contains
many varieties of local optima that may trap gradient algorithms,
but the performance of most of these optima is similar and nor-
mally correspond to good control.

To gain further insight into the way the collective landscape
changes as new elements are added to the distribution, we also
implemented a new method, where a single initial guess is system-
atically optimized over distributions of increasing width. We first
attempted to maximize the bandwidth of the pulse with respect
to static field inhomogeneity, while neglecting RF-inhomogeneity
(i.e. setting x1 = 1). The target bandwidth of the pulse was defined
to be 2Dxmax, where the uniform distribution was defined as
PðDxÞ ¼ 1=M for M values of Dx = (�Dxmax, . . . ,�2dx,�dx, 0,
dx, 2dx, . . . ,Dxmax). The value of dx is determined by the length
of the pulse in order to ensure that if high fidelity is achieved at
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each point in the distribution, the fidelity taken continuously in be-
tween will remain high. We found that a value of 1

4T, where T is the
length of the pulse, is sufficient.

The iterative optimization procedure started with an on-
resonance optimization, P1ðDx ¼ 0Þ ¼ 1, where the results of
quantum control theory dictate that unit fidelity is always achiev-
able regardless of initial guess. The resulting optimized pulse was
then used as the initial guess for an optimization over three
isochromats, P2ðDx ¼ �dx;0; dxÞ ¼ 1=3, and allowed to run until
a local maximum of the new collective landscape was found. A
small amount of randomization was added such that the the
distance between isochromats was not exactly equal. After a pulse
was optimized over three isochromats, that pulse was used as an
initial guess for five isochromats, Dx = (�2dx, �dx, 0, dx, 2dx),
and so on.

The iterative process was terminated when the average fidelity
achieved over the distribution dropped below roughly 0.9. We
found that by using this process, regardless of our initial guess, a
series of convergent pulses with an associated fidelity versus static
inhomogeneity bandwidth curve was generated (Fig. 1) and a sat-
isfactory result was obtained in only the order of tens of optimiza-
tions. The characteristics of this curve varied depending on the
initial guess, but always yielded usable solutions. In order to ac-
count for RF-inhomogeneity a pulse from the related set generated
by the iterative optimization was chosen to be reoptimized. With-
out changing the bandwidth of the pulse with respect to static field
inhomogeneity, a certain amount of RF-inhomogeneity was added.
For example, if we chose a pulse that was optimized over 41 values
of Dx and we added in ±10% RFI given by x1 = 0.9, 0.95, 1, 1.05,
1.1, the resulting distribution PðDx;x1Þ ¼ 1=204 would have
41 � 5 = 204 elements.

The success of this particular approach suggests that the struc-
ture of the collective landscape characterizing the average fidelity
does not change abruptly as the width of the distribution is in-
creased slowly. A good solution for a given distribution width
should therefore remain in the immediate neighborhood of a local
optimum with high fidelity for a slightly wider distribution width.
Fig. 1. Two representative examples of the iterative optimization procedure
utilized in this study. The results shown by the red circles and blue squares
correspond to two iterative series of pulses derived from two different random
initial guesses, respectively. The pulses are iteratively optimized over an increasing
target bandwidth of resonance offsets. We find that, regardless of the initial guess,
the resulting curves of average fidelity versus target bandwidth are similar,
indicating that the pulses for the different realizations have similar maximum
bandwidth. The filled in squares represent the pulses mentioned in the text, with
the inset showing the temporal profile of the pulse chosen for extended analysis.
High-resolution pulse profile and parameter list is available in Supplementary
material.
However, concrete statements about the structure of the control
landscape are the subject of quantum control theory, and are out-
side the scope of this present work. Additionally, while we are not
aware of any published bound in the NMR literature on the glob-
ally maximal pulse performance subject to the constraints consid-
ered here, we note that the current problem is related to problems
in holonomic control that are naturally posed in SO(3). As such, a
published bound may exist in the literature on holonomic control.
4. Results

We present specific results obtained by optimizing the fidelity
of OCT refocusing pulses constrained to be 1 ms duration and with
a maximum instantaneous RF amplitude of Amax/2p = 5 kHz. Our
pulses were defined piecewise constant over 100 intervals of
10 ls duration and the 200 degrees of freedom in the problem –
100 periods of varying pulse amplitude and phase – were opti-
mized iteratively over a uniform distribution using the GRAPE
algorithm at each iteration. A 6 ls delay before and after the pulse
was incorporated into the optimization to account for hardware
switching times in back-to-back applications of our pulses. These
delays are not directly part of the pulse waveform, but must be in-
cluded in simulations and experiments in order for the pulse to
function properly.

Using the iterative optimization procedure we generated a ser-
ies of related pulses, terminating the series when the average fidel-
ity dropped below roughly 0.9 for the target bandwidth being
optimized. Fig. 1 displays two representative curves of the average
fidelity of the optimized pulses as a function of target bandwidth
(jDxj 6 Dxtarg). Not surprisingly, for small target bandwidths it
is possible to find pulses with an average fidelity very nearly unity;
unit fidelity was achieved only for the on-resonance optimization.
As the target bandwidth is increased, the average fidelity begins to
drop, with the detailed characteristics of the curve dependent upon
the initial guess. We found that the target bandwidth at which the
average fidelity drops below 0.99 was nearly the same for all initial
guesses we tried. We took this point to represent the maximum
bandwidth achievable before pulse performance is significantly af-
fected. Based on this performance criterium, the best refocusing
pulse we could find in the absence of RF inhomogeneity (RFI) is
marked in Fig. 1 and has an average fidelity eU ¼ 0:989 over a total
bandwidth of 4Amax. Fig. 2 shows the calculated response of a
CPMG sequence using this refocusing pulse, in the absence of
relaxation and RFI. The response is almost entirely maximal across
the entire optimization range with refocusing of over 96% of the
magnetization at any offset. This performance is retained at higher
echo numbers. This confirms that optimizing the average fidelity
maximizes the echo visibility and allows the generation of a large
number of echoes.

When RFI is included in the optimizations, a trade-off between
achievable resonance offset bandwidth and RFI compensation be-
comes apparent. For modest RFI of ±10% (x1 = 0.9–1.1), the average
pulse fidelity of the pulse optimized over a static offset bandwidth
of 4Amax drops to 0.972, while a pulse optimized over a static offset
bandwidth of 3.2Amax has average fidelity of 0.982. In the absence
of RFI, the latter pulse has average fidelity of 0.996 over the respec-
tive bandwidth. We chose this pulse for further analysis. Its tempo-
ral profile is shown in the inset of Fig. 1. The RF tends to remain on
for nearly the entire pulsing time while the phase is non-trivially
varied in a non-symmetric way.

To verify that high average fidelity leads to the desired pulse
performance, we must consider the fidelity and CPMG criteria of
our OCT refocusing pulse as a function of resonance offset. Given
the relation between fidelity and pulse rotation errors (Eq. (16)),
an average fidelity close to unity implies that for every value
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within the considered B0 � B1 distribution, the net action of the
optimized pulse is very close to a p rotation around the y-axis.
Fig. 3 demonstrates that this is indeed the case. For comparison,
we include the corresponding quantities for a standard hard p
pulse of the same maximum RF amplitude (duration 100 ls). Note
that, in general, the deviation of the rotation for our OCT pulse
from a y-axis rotation is smaller than the deviation from a p
nutation angle, as desired.

4.1. Experimental verification

In order to verify that our OCT pulses perform as expected in
experiment, we performed CPMG measurements on a sample of
90% D2O/10% H2O. Roughly 3 mM copper-sulfate (CuSO4) was
added to the sample in order to obtain a relaxation time of T2 �
270 ms at 300 MHz proton resonance. RF inhomogeneity was mea-
sured to extend out to ±20%, with the majority of the field
strengths concentrated in the ±10% range. We performed CPMG
measurements using the OCT refocusing pulse shown in the inset
of Fig. 1, having a total duration of 1 ms and a maximum RF ampli-
tude Amax/2p = 5 kHz, with a time between refocusing pulses of
2s = 20 ms. The 90� excitation pulse was an on-resonance rectan-
gular hard pulse of amplitude 31.25 kHz to ensure the sequence
performance was limited only by the refocusing pulses. To test
the performance under off-resonance conditions, we systemati-
cally varied the offset of the proton transmitter frequency from
the Larmor frequency in 100 Hz increments in the range from
�10 kHz to 10 kHz (sequences run in an applied gradient field
are included in the Supplementary material for verification).
Fig. 4a shows the amplitudes of the first 13 echoes of a CPMG se-
quence with OCT refocusing pulses as a function of offset fre-
quency. As a comparison, we show in Fig. 4b the first 10 echoes
of a CPMG sequence using standard, hard refocusing pulses of
5 kHz amplitude. The measurements confirm that, for the OCT
refocusing pulses, pulse errors do not contribute significantly to
the observed decoherence and the echo visibility is maximal over
the entire optimized range of jDxj 6 1.6Amax.

To further quantify the echo decay, we compared the ampli-
tudes of the CPMG echoes as a function of time for different values
of the time between OCT refocusing pulses, 2s, and for two
particular values of resonance offset (Fig. 5). The slope for each
of these echo spacings is nearly identical, in agreement with our
expectation. In addition, there is no evidence of additional pulse-
induced relaxation decay when shorter echo spacings are used. In
fact, our results suggest that when more pulses are applied in a
given time period, T2,eff becomes slightly longer. This is most likely
due to T1 being slightly longer than T2. The complex trajectories
taken on the Bloch sphere, as shown in Fig. 6, cause the magnetiza-
tion to spend some amount of time away from the transverse
plane. This implies that as more pulses are applied in a given time
period, the effects of T1 become increasingly important. While the
exact proportion of time spent away from the transverse plane
varies depending on resonance offset, in general the magnetization
undergoes T1 relaxation for roughly one third of the pulse duration.
Using this approximation and a measured value of T2 of roughly
270 ms (using a hard pulse CPMG sequence on-resonance), the
measured T2,eff of 282 ms for 2s = 2 ms implies a T1 of roughly
370 ms. These values predict an apparent T2 for 2s = 10 ms of
275 ms, consistent with our measurement. Similarly, the measured
and expected values of T2 for 2s = 30 ms and 60 ms are close to
272 ms.
4.2. Comparison to previous pulses

Fig. 7 compares the performance of our OCT pulse with previ-
ously published refocusing pulses by examining the fidelity as a
function of resonance offset, averaged over ±10% RFI. The Chirp
pulse is a composite adiabatic pulse [44] composed of a base ele-
ment Chirp adiabatic inversion pulse [45–47] scaled to Amax/
2p = 5 kHz. The original pulse was 2 ms long, with a 60 kHz sweep
width, 20% smoothing, and on-resonance adiabaticity of Q0 = 5. Our
scaled version changes the sweep width to 30 kHz and the pulse
length to 4 ms, without changing Q0. We found that, with the con-
straint of maximum RF amplitude, 4 ms was the minimum time re-
quired for the pulse to fulfill the adiabatic condition and function
properly. Additionally, a previously derived 90� OCT excitation
pulse was downloaded from the website mentioned in [40] and
turned into a 1.02 ms refocusing pulse consisting of 1020 intervals
of 1 ls duration by the method detailed in [41]. The excitation
pulse was originally optimized over jDxj 6 1.5Amax and x1 = 0.8–
1.2. The performance quality of the original excitation pulse with
respect to Dx and x1 is retained by the symmetrized refocusing
pulse.

As shown in the figure, each of the pulses considered performs
very nearly as a p)y pulse over a range of resonance offsets of
± 1.6Amax. The Chirp pulse performs most closely to the desired
behavior over the operating range, but at the expense of being four
times longer than the OCT pulses. The performance of the pulse de-
rived by symmetrizing a previously reported OCT excitation pulse
is similar to the performance of our OCT pulse found by direct opti-
mization without symmetrization. The fact that similar limits of
performance for OCT pulses were obtained by different means
and using many different initial guesses suggests that we may be
near the global limit on bandwidth for the constraints considered,
and that the performance of many solutions are clustered around
the global maximum. However, a proper treatment of this claim re-
quires further investigation and is outside the scope of this work.

While it is instructive to consider the performance criteria of a
single refocusing pulse, it is difficult to use this information di-
rectly to infer the performance of the CP(MG) sequence over many
pulses. To do so we must consider not only the errors which occur
during a single pulse application, but how they correlate and
evolve during the application of many pulses. In the next section,
we take advantage of developments in the study of quantum chan-
nels to compactly describe the nature and severity of errors that
occur during the CP(MG) sequence and quantify the effects those
errors have on the performance of the sequence.



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δω / A
max

Fi
de

lit
y 

[Φ
]

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−100

−80

−60

−40

−20

0

20

40

60

80

100

Δω / A
max

An
gl

e 
[D

eg
]

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

Δω / A
max

An
gl

e 
[D

eg
]

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

120

150

180

210

240

270

300

330

360

Δω / A
max

N
ut

at
io

n 
An

gl
e 

[D
eg

]

Fig. 3. Fidelity and CPMG criteria as a function of resonance offset for the 1 ms OCT refocusing pulse (blue) optimized over jDxj 6 1.6Amax and x1 = 0.9–1.1, as compared to a
100 ls hard pulse (red). The solid lines indicate the response for uniform RF (x1 = 1), while the dotted (dash-dotted) lines indicate the maximum (minimum) angle over the
range of x1 = 0.9–1.1. The rotation axis for the OCT pulse stays within 15� of the initial magnetization over the optimized distribution and the nutation angle remains within
30� of 180�.
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Fig. 4. Experimental results of echo amplitudes generated by CPMG sequences with OCT refocusing pulses (a) and standard hard pulses (b) acquired at 300 MHz on a sample
of CuSO4 doped 90% D2O/10% H2O with T2 � 270 ms. The results were acquired sequentially by changing the resonance offsets systematically over the range of jDxj 6 2Amax.
The time between refocusing pulses is 2s = 20 ms. The CPMG sequence with OCT pulses generates a uniform response over resonance offsets in the range of ±1.6Amax. The
response of the excitation pulse is shown to be flat over the relevant range of resonance offsets.
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Fig. 6. Bloch sphere trajectories during the OCT refocusing pulse for several values of resonance offset as applied to a ry initial state. The trajectories for different isochromats
vary significantly but result in nearly identical effective rotations. Roughly two-thirds of the magnetization is in the transverse plane during pulsing. The black ‘o’ denotes the
initial state, while the black ‘x’ denotes the final state.
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5. Discussion and analysis

To appreciate how the near satisfaction of the CPMG criteria for
each isochromat leads to a successful CPMG sequence, we may
consider the collective action averaged over P(Dx, x1). As given
by Eq. (6), the overall dynamics correspond to a convex operator
sum over the distribution. While the action is unitary for each iso-
chromat, the overall action viewed as an effective map from qin to
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Fig. 7. Simulated fidelity as a function of resonance offset for our 1 ms OCT pulse
optimized over ±10% RFI and jDxj 6 1.6Amax (blue), a previously published OCT
excitation pulse [40] optimized over ±20% RFI and jDxj 6 1.5Amax and modified to
be a 1.02 ms refocusing pulse (red), a 4 ms Chirp refocusing pulse (black) [44], and a
100 ls hard pulse (green). All pulses have maximum RF amplitude Amax/2p = 5 kHz.
The fidelities for each offset were averaged over ±10% RFI (x1 = 0.9–1.1). High-
resolution time-domain profiles for each pulse are included in the Supplementary
material.
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qout need no longer be unitary. In this case, representation via a
superoperator is needed to provide a compact and complete
description of the dynamics.

5.1. CPMG superoperator

A superoperator is a general map that describes the dynamics of
a physical system by defining how any valid input state is mapped
to any valid output state [48]. While a general quantum process
may be conveniently described by a superoperator, ideally the
map must be completely positive and trace-preserving. Requiring
a map to be positive and trace-preserving ensures that valid quan-
tum states (given by positive, Hermitean density operators) are
mapped to other valid quantum states, and that probability is con-
served. Demanding that the map be completely positive ensures
that the same is true when the map is considered as a subsystem
of a larger quantum system. When the superoperator is calculated
over a distribution, as given in this case by field inhomogeneities, a
completely positive map is only expected if the input state, qin, is
uncorrelated over the distribution. It is important to note that in
any experimental study of a physical system the superoperator will
not be completely positive.

The elements of the CPMG superoperator for n cycle applica-
tions are determined by the action of the map on a spanning set
of basis vectors in Liouville space. In the Pauli basis the superoper-
ator for n cycles of the CPMG sequence is

h~rbjeSnj~rai ¼
1
2

Tr rb

Z
PðDx;x1Þ UcycleðDx;x1Þ

� �n
	

� ra UycycleðDx;x1Þ
h in

dDxdx1



: ð20Þ

Here ra,b = {I, rx, ry, rz} are the usual spin-1
2 Pauli operators and

j~ra;bi are the columnized version of the operators obtained by stack-
ing the first column of the respective Pauli matrix on top of its sec-
ond column [49]. The columnized Pauli operators are basis vectors
in Liouville space.

While the unitary dynamics for a single spin-1
2 are describable

in a 2-dimensional Hilbert space, the superoperator is described
in a 4-dimensional Liouville space. Notice that, because the
superoperator is averaged over a physical distribution, we must
describe a superoperator individually for each n. This is equivalent
to the statement made in Section 2 that the averaging must be
undertaken after the propagator for each element of the distribu-
tion is raised to the nth power. Since we have approximated the
input density matrix of the system as being independent of this
distribution, the superoperator is completely positive and has a
Kraus representation [50]:

qout ¼
X3

k¼0

AkqinAyk; ð21Þ

where the Kraus operators are given by

Ak ¼
ffiffiffiffiffi
pk
p

Uk; ð22Þ

such that a portion of the sample given by the probability pk expe-
riences evolution under the action of the unitary propagator Uk.
Since we also require that the map be trace-preserving, the Kraus
operators must satisfy the conditionX

AkAyk ¼ I: ð23Þ

The form of the Kraus operators given in Eq. (22) is a result of
the space of all completely positive, trace-preserving (CPTP) maps
for a single spin being convex with unitary extrema. This means
that any Kraus operator that is non-unitary may be written as a lin-
ear sum of unitary Kraus operators. Thus, any non-unitary Kraus
representation of a CPTP map may be transformed into a linear
combination of unitary operators. There are an infinite number of
Kraus representations for a particular map, but only one maxi-
mizes the linear independence of the operators. This unique repre-
sentation is determined by the eigenvectors and eigenvalues of the
Choi matrix [49,51].

A map corresponding to unitary evolution will yield only one
non-zero eigenvalue and, as a result, be fully described by a single
Kraus operator with unit probability. As the CPMG superoperator
will not necessarily be unitary, the Kraus representation will gen-
erally consist of four operators with varying probabilities. Kraus
representation as a Pauli channel yields considerable insight into
the multi-pulse dynamics that occur during a CPMG sequence.

5.2. Pauli channel model

A Pauli channel is one of a class of quantum channels – a con-
cept from the field of quantum information theory describing the
nature of a transmission line between quantum mechanical enti-
ties [52]. In the context of the CPMG sequence, the quantum chan-
nel is the sequence of refocusing pulses and delays taken together
with incoherent noise given by magnetic field inhomogeneities.
The quantum mechanical entities to be connected are the initial
and final density matrices representing the spin state after n appli-
cations of the CPMG cycle.

A Pauli channel, Cp, of a CPTP map acting on an uncorrelated in-
put state, qin, for an ensemble of spins-1

2 is a special case of a Kraus
representation and is defined by

qout ¼ CpðqinÞ ¼
X3

i¼0

piriqinr
y
i ; ð24Þ

where ri = {I, rx, ry, rz} and pi denotes the probability of the system
undergoing evolution under the action of the ith operator. For
example, spin–spin (T2) relaxation during a CPMG sequence with
ideal pulses may be modeled as a Pauli channel dephasing process
about the longitudinal axis, corresponding to rz-noise. For this pro-
cess only two Kraus operators with non-zero probability are
needed:
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A0ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5þ 0:5e�t=T2

p
I

A1ðtÞ ¼ A2ðtÞ ¼ 0

A3ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5� 0:5e�t=T2

p
rz

ð25Þ

A0 refers to the identity operation, I, occurring with probability
p0 ¼ 0:5þ 0:5e�t=T2 , while A3 refers to a transverse dephasing oper-
ation, rz, occurring with probability p3 ¼ 0:5� 0:5e�t=T2 . It is clear
from this model that, for short times, all input states will experience
the identity operation and remain unchanged. However, as time
progresses, the probability of the dephasing operation, rz, occurring
will exponentially grow, leading to the expected decay of the trans-
verse spin states. Note, also, that the rz input state, corresponding
to longitudinal magnetization, will remain unchanged for all time,
as desired.

Similarly, if considered as a pure dephasing channel and assum-
ing imperfect y-axis refocusing pulses, a Pauli channel representa-
tion of the CPMG sequence in the absence of relaxation will have
two operations with non-zero probability, ry and I. The ry dephas-
ing operator will cause the rx and rz input states to decay, while
the ry input state will remain unchanged. In general, though,
CPMG dynamics are not pure dephasing and to properly model
the sequence as a Pauli channel requires consideration of all four
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Fig. 8. Pauli channel representations for CPMG dynamics using four different refocusin
dotted), and rz (green dotted) operations are shown as a function of the number of cycle
with time between refocusing pulses of 2s = 2 ms. Similar behavior is seen when the val
the influence of cumulative errors associated with each pulse. The dephasing rate const
possible Kraus operators. It is evident, then, that a successful CPMG
sequence with y-axis refocusing pulses must have asymptotically
small and bounded probabilities for the rx and rz operators such
that the ry input state does not decay.

The results of a Pauli channel fit for a CPMG sequence using our
OCT refocusing pulse optimized over jDxj 6 1.6Amax and x1 = 0.9–
1.1 is shown in Fig. 8a. Based on a comparison of the fitted super-
operators to the superoperators calculated directly from Eq. (20),
the Pauli channel model captures over 99% of the action of the
map. It is evident that the decay and growth of the I and ry oper-
ations are not entirely exponential, reinforcing the notion that the
CPMG sequence cannot be fully represented as a pure dephasing
channel. In fact, there are three main elements to the dynamics:
An immediate loss of visibility due to the fringes of the distribution
that are not compensated by the p-pulse, a fast loss of visibility due
to initial oscillations that lead on large n to damping, and dephas-
ing that preserves only a single orthogonal input state.

The complete simulated dynamics of a CPMG sequence and CP
sequence using our OCT refocusing pulse is shown in Fig. 9. Note
that the complete CP(MG) dynamics are calculated for every echo
while the Pauli channel representation is calculated over the cycle
(2 echoes). The decay envelope of the CP sequence (qin = rx) is cap-
tured almost entirely by the decay and growth of the probabilities
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g pulses. Probabilities of the identity (black solid), rx (red dashed), ry (blue dash-
applications. The sequences were simulated over jDxj 6 1.6Amax and x1 = 0.9–1.1

ue of s is varied. Representation as a Pauli channel allows us to accurately compare
ant, T2,pulse, was taken as the 1/e point in the decay of the identity probability.
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Fig. 9. Full simulated dynamics for a CPMG sequence and CP sequence using our OCT refocusing pulse optimized and simulated over jDxj 6 1.6Amax and a range of RF
amplitudes of x1 = 0.9–1.1. The time between refocusing pulses was set to 2s = 2 ms. The immediate and fast loss of visibility is shown by the initial and asymptotic
magnetization being less than unity. The decay of the transients is due to the dephasing portion of the dynamics. Representation of the dynamics as a Pauli channel captures
over 99% of the action of the map, describing both the loss of visibility and pulse-induced dephasing.

Table 1
Dephasing rate and asymptotically retained magnetization for CPMG sequences using
four different types of refocusing pulses.

Pulse T2,pulse/tc M1

Chirp 9 cycles 0.997
Non-symmetrized OCT 6 cycles 0.991
Symmetrized OCT 3 cycles 0.981
Hard 1 cycle 0.646
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of the Pauli channel identity and ry operations, respectively. It is
the ry and rz operations that represent the dephasing part of the
dynamics for a CP sequence. As the probability of the ry operation
occurring is not asymptotically small and bounded, the magnetiza-
tion retained by the CP sequence is nearly zero for large numbers of
echoes. This contrasts with the envelope of the CPMG sequence
(qin = ry), where the dephasing operators are rx and rz. As the
probabilities of these operators are asymptotically small and
bounded, the magnetization retained by the CPMG sequence is al-
ways close to unity.

A method for quantitatively evaluating the cumulative pulse er-
rors that occur during a CPMG sequence can now be formulated.
We may assign a model based on a Pauli channel that captures
the three elements of the CPMG dynamics just mentioned:

A0ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cI þ 0:5e�ntc=T2;pulse

q
I

A1ðnÞ ¼
ffiffiffiffiffi
cx
p

rx

A2ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cy � 0:5e�ntc=T2;pulse

q
ry

A3ðnÞ ¼
ffiffiffiffi
cz
p

rz

ð26Þ

In this model, T2,pulse is a time constant which represents the
dephasing that occurs due to the pulse errors and tc is the time be-
tween every 2 echoes (the cycle time). For n� T2,pulse/tc the CPMG
and CP sequences perform roughly the same as an identity opera-
tion, while for n	 T2,pulse/tc the ry operator becomes significant,
causing the CP sequence to retain no initial magnetization. Note
that the probabilities are now a function of cycle number to reflect
the distinction that T2 is independent of echo spacing, while T2,pulse

is not. The constants, cI,x,y,z, determine the asymptotic behavior of
the channel and represent loss of visibility. At the cost of losing
information about the initial magnetization oscillations present in
any CPMG sequence, the constants cx and cz are taken to be inde-
pendent of n, such that the overall loss of visibility due to pulse er-
rors is still retained. The asymptotically retained magnetization for
a CPMG sequence is given by M1 = cI + cy � (cx + cz) and the rate at
which a CP sequence would lose signal is given by T2,pulse. M1
and T2,pulse/tc are two numbers that allow us to completely and
compactly characterize refocusing pulses for use in multiple refo-
cusing sequences. The ideal refocusing pulse has T2,pulse/tc ?1
and M1? 1.

The result of a Pauli channel fit for CPMG sequences using the
four pulses previously compared in Section 4.2 is displayed in
Fig. 8. All pulses were restricted to a maximum amplitude of
Amax/2p = 5 kHz and were simulated over jDxj 6 1.6Amax and
± 10% RFI (x1 = 0.9–1.1). The difference in refocusing ability for
each pulse is clearly distinguishable (see Table 1).

5.3. Validity of Pauli channel

A Pauli channel model is an excellent description of CPMG
dynamics due to both the refocusing being about a single cartesian
coordinate and the averaging being complete enough over the dis-
tribution in question to suppress the off-diagonal components of
the superoperator (Eq. (20)). A superoperator that may be accu-
rately represented as a Pauli channel must be diagonal in the Pauli
basis. This requirement is derived by noting that a Pauli channel
(as defined by Eq. (24)) does not mix the components of the input
state. For example, for each orthogonal input state (rx, ry, and rz)
the output from the channel will remain either rx, ry, or rz, but
with a scaling factor. In general, though, for an arbitrary distribu-
tion, P(Dx, x1), and a refocusing pulse about an arbitrary axis,
the superoperator describing the dynamics in the Pauli basis will
contain off-diagonal components. This can be seen by considering
that for each element of the distribution, the cycle propagator is of
the general form

UcycleðDx;x1Þ ¼ e�i
hðDx;x1 Þ

2 r̂ðDx;x1Þ�~r: ð27Þ

The resulting density matrix after n applications of the cycle, for an
uncorrelated initial state qin, is then given by

qðnÞout ¼
Z

PðDx;x1Þ cos2 nh
2
ðIqinIÞ þ i sin

nh
2

cos
nh
2
ðIqinr̂ �~rÞ

�

�i sin
nh
2

cos
nh
2
ðr̂ �~rqinIÞ þ sin2 nh

2
ðr̂ �~rqin r̂ �~rÞ


dDxdx1:

ð28Þ
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This equation is an expansion of Eq. (27) inserted into Eq. (20). The
dependence of h and r̂ on Dx and x1 has been dropped for clarity
and the argument nh is taken to be modulo 2p. As noted in Ref.
[14] using analysis in SO(3), if after a certain number of cycles the
range h = [0, 2p] is sampled uniformly over Dx and x1, Eq. (28) re-
duces to

qout ¼
Z

PðDx;x1Þ
1
2
ðIqinIÞ þ 1

2
ðr̂ �~rÞqinðr̂ �~rÞ

� 
dDxdx1: ð29Þ

The integrand may be expanded as
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Fig. 10. Decomposition of the propagator characterizing a cycle [s � py � 2s � py � s] wi
panels show the projections of the net rotation axis onto the ŷ axis, the middle panels the
for 50 cycles. In each panel, the solid line is the response for uniform RF (x1 = 1), whi
x1 = 0.9–1.1. The OCT pulse was optimized over jDxj 6 1.6Amax with a uniform range o
panels, the scales for the OCT and hard pulses are different.
1
2
ðIqinIÞ þ 1

2
r2

x ðrxqinrxÞ þ r2
yðryqinryÞ þ r2

z ðrzqinrzÞ
h

þ rxryðrxqinryÞ þ rxrzðrxqinrzÞ þ ryrxðryqinrxÞ

þ ryrzðryqinrzÞ þ rzrxðrzqinrxÞ þ rzryðrzqinryÞ
i
: ð30Þ

The same result may be arrived at by computing the eigen-
values of the Choi matrix, as outlined in [49].

The averaging of the off-diagonal elements of the superoperator
in the product operator basis – elements of the form riqinrj, where
i – j – is dependent upon the distribution and refocusing pulse in
question. The inhomogeneity we consider here is symmetric about
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th OCT pulses (left) and standard hard pulses (right) versus resonance offset. The top
nutation angle for a single cycle, and the bottom panels the effective nutation angle
le the dashed (dotted) lines indicate the maximum (minimum) over the range of

f RF of x1 = 0.9–1.1. For this calculation s was set to 1 ms. Note that in the top two
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the on-resonance Larmor precession frequency such that the aver-
age of rz over Dx and x1 will tend toward zero. Additionally, field
inhomogeneities tend to tip the effective rotation axis of a refocus-
ing pulse out of the transverse plane while minimally affecting the
orientation in the transverse plane. Since we are considering a y-
axis pulse, rx will tend to be small for all values of Dx and x1. Thus,
the only terms to be significant in Eq. (30) will be r2

x;y;z such that the
dynamics is given by a Pauli channel to a high degree of accuracy.

In the case of our OCT CPMG cycle, as shown in Fig. 10, r̂ �~r is
very nearly ry for all Dx and x1 and the variation in h across
Dx and x1 is such that after roughly 30 cycle applications the
averaging is complete enough that the map is given almost entirely
by IqinI and ryqinry with equal probabilities. For the field inhomo-
geneities considered here (jDx/2pj 6 8 kHz and x1 = 0.9–1.1), the
model is an excellent description of the dynamics, with a trace
overlap of greater than 0.9999 between the fitted and simulated
superoperators for all cycles. Even for the case of hard pulses
where the variation of ry and h is large over a single cycle (see
Fig. 10), the trace overlap is still greater than 0.999 for all cycles.
6. Conclusions

We have applied optimal control techniques to find general
refocusing pulses that act as a universal p)y rotation over a wide
range of resonance offset frequencies and RF amplitudes. Such
pulses can significantly extend the range over which the CPMG se-
quence retains its intrinsic robust nature. An iterative optimization
procedure was used to systematically expand the target bandwidth
while keeping the total duration and maximum RF amplitude of
the pulses fixed. We specifically considered pulses that are 1 ms
long, with limited Instantaneous RF power of cB1,max/2p = 5 kHz.
This specific problem is directly relevant to noise suppression in
QIP applications and for decoupling applications. It is also an
important first step in establishing the framework for future inves-
tigations for other applications, including finding optimized OCT
pulses that maximize the SNR of the CPMG sequence in grossly
inhomogeneous fields.

A significant advantage of using OCT techniques is the flexibility
of the method. It allows addressing unique requirements and con-
straints in individual experimental situations. This is accomplished
by redefining the measures of pulse performance. In general, one
pulse will not ideally suit the needs of all applications. The versa-
tility of OCT lies in the ease with which various performance func-
tionals and constraints may be substituted into the optimization
procedure without requiring a change to the general optimization
methods.

The performance of our pulses with respect to the CPMG criteria
demonstrates a significant reduction in the variation of the net
nutation angle and direction of the rotation axis over the optimiza-
tion range when compared to a hard pulse. Although the variation
is not fully eliminated, we were able to find a pulse which refo-
cuses over 99% of the initial magnetization over a range of fre-
quency offsets four times the maximum amplitude of the RF
power (±10 kHz) for uniform RF. In the case when the RF has an
amplitude distribution of ±10%, we were able to find a pulse that
refocuses over 98% of the initial magnetization over a frequency
range of 3.2 times the maximum RF amplitude (±8 kHz).

The performance of our pulses also demonstrates improvement
over any previously published refocusing pulses of similar time
and maximum RF amplitude. Comparable performance to our di-
rectly optimized pulse was only found when we symmetrized a
previously published broadband OCT excitation pulse to make it
a universal p-pulse. Repeated application of the refocusing pulses
does not induce any extra decay due to pulse errors. This enables
the monitoring of the magnetization decay with a large number
of echoes. The observed relaxation time is dominated by the T2 of
the sample, with some minor T1 contamination during the pulses.
Additionally, we have demonstrated that our OCT pulses are exper-
imentally viable and perform in experiments as predicted by
simulation.

Superoperators were used to analyze the general spin dynamics
for a pulse over a system with a distribution of B0 and B1 fields. As
demonstrated, the spin dynamics are well described as a Pauli
channel, which provides a compact form to predict the perfor-
mance of multiple pulses, both for CP and CPMG sequences, and al-
lows the performance of the refocusing pulses to be succinctly
described by only two parameters: the asymptotic visibility, M1,
and the pulse-induced dephasing time, T2,pulse, of the sequence.
Additionally, a recent discovery in quantum information theory
states that any noise which may be described as a Pauli channel
may be compensated by an appropriate logical encoding [53]. This
allows, through the use of encoding the logical state of a single spin
into the physical state space of two spins, a CPMG sequence which
treats all input states identically, yielding the identity channel for
all times even in the presence of decoherence and dynamic pulse
errors.

Other future applications of our results and the methods de-
scribed in this work include minimizing T1 contamination during
pulsing by limiting the allowed trajectories on the Bloch sphere,
eliminating transients by designing pulses that dephase immedi-
ately due to pulse errors (i.e. T2,pulse = 0), increasing bandwidth
by directly optimizing the rotation axis over a cycle, sculpting re-
sponse of excitation pulses to directly match the rotation axis of
the CPMG cycle for each element of the field distribution, system-
atically optimizing SNR by examining the maximum bandwidth
achievable for a variety of pulse lengths, and designing pulses that
minimize overall power consumption without significantly affect-
ing bandwidth. However, as the optimal solutions, in both the sym-
metrized and our unsymmetrized versions (see Supplementary
material), seem to have RF at maximal amplitude for almost the
entire pulse duration, optimizing for overall power consumption
becomes a problem of once again maximizing bandwidth for dif-
ferent pulse lengths to achieve the best SNR. These applications
are just a few of many novel ways in which optimal control tech-
niques may be used to design more robust CPMG sequences.
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